Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Molecules ; 27(13)2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1917638

RESUMEN

Coming into the second year of the pandemic, the acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants continue to be a serious health hazard globally. A surge in the omicron wave, despite the discovery of the vaccines, has shifted the attention of research towards the discovery and use of bioactive compounds, being potential inhibitors of the viral structural proteins. The present study aimed at the green synthesis of zinc oxide (ZnO) nanoparticles with seed extracts of Nigella sativa and Pimpinella anisum-loaded nanostructured oil carriers (NLC)-using a mixture of olive and black seed essential oils. The synthesized ZnO NLC were extensively characterized. In addition, the constituent compounds in ZnO NLC were investigated as a potential inhibitor for the SARS-CoV-2 main protease (3CLpro or Mpro) where 27 bioactive constituents, along with ZnO in the nanostructure, were subjected to molecular docking studies. The resultant high-score compounds were further validated by molecular dynamics simulation. The study optimized the compounds dithymoquinone, δ-hederin, oleuropein, and zinc oxide with high docking energy scores (ranging from -7.9 to -9.9 kcal/mol). The RMSD and RMSF data that ensued also mirrored these results for the stability of proteins and ligands. RMSD and RMSF data showed no conformational change in the protein during the MD simulation. Histograms of every simulation trajectory explained the ligand properties and ligand-protein contacts. Nevertheless, further experimental investigations and validation of the selected candidates are imperative to take forward the applicability of the nanostructure as a potent inhibitor of COVID-19 (Coronavirus Disease 2019) for clinical trials.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Nanoestructuras , Nigella sativa , Pimpinella , Óxido de Zinc , Cisteína Endopeptidasas/química , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Nigella sativa/metabolismo , Péptido Hidrolasas/metabolismo , Extractos Vegetales/farmacología , Inhibidores de Proteasas/química , SARS-CoV-2 , Semillas/metabolismo , Proteínas no Estructurales Virales/metabolismo , Óxido de Zinc/farmacología
2.
Nat Prod Res ; 36(22): 5817-5822, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: covidwho-1585378

RESUMEN

Tissue damage occurs in COVID-19 patients due to nsp3-induced Fas-FasL interaction/TNF-related apoptosis. Presently, possible therapeutic-drug, nigellidine against was screened by bioinformatics studies COVID-19. Atomic-Contact-Energy (ACE) and binding-blocking effects were explored of nigellidine (Nigella sativa L.) in the active/catalytic sites of viral-protein nsp3 and host inflammatory/apoptotic signaling-molecules Fas/TNF receptors TNFR1/TNFR2. A control binding/inhibition of Oseltamivir to influenza-virus neuraminidase was compared here. In AutoDock, Oseltamivir binding-energy (BE) and inhibition-constant (KI) was -4.12 kcal/mol and 959.02. The ACE values (PatchDock) were -167.02/-127.61/-124.91/-122.17/-54.81/-47.07. The nigellidine BE/KI with nsp3 was -7.61 and 2.66, respectively (ACE values were -221.40/-215.62/-113.28). Nigellidine blocked FAS dimer by binding with a BE value of -7.41 kcal/mol. Its strong affinities to TNFR1 (-6.81) and TNFR2 (-5.1) are demonstrated. Our present data suggest that nigellidine may significantly block the TNF-induced inflammatory/Fas-induced apoptotic death-signaling in comparison with a positive-control drug Oseltamivir. Further studies are necessary before proposing nigellidine as medical drug.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Cuminum , Nigella sativa , Humanos , Receptores Tipo I de Factores de Necrosis Tumoral/química , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/farmacología , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/farmacología , Nigella sativa/metabolismo , Cuminum/metabolismo , SARS-CoV-2 , Oseltamivir/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Apoptosis , Semillas/metabolismo , Replicación Viral
3.
Phytother Res ; 35(2): 908-919, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: covidwho-777655

RESUMEN

COVID-19 pandemic is currently decimating the world's most advanced technologies and largest economies and making its way to the continent of Africa. Weak medical infrastructure and over-reliance on medical aids may eventually predict worse outcomes in Africa. To reverse this trend, Africa must re-evaluate the only area with strategic advantage; phytotherapy. One of the many plants with previous antiviral potency is against RNA viruses is Aframomum melegueta. In this study, one hundred (100) A. melegueta secondary metabolites have been mined and computational evaluated for inhibition of host furin, and SARS-COV-2 targets including 3C-like proteinase (Mpro /3CLpro ), 2'-O-ribose methyltransferase (nsp16) and surface glycoprotein/ACE2 receptor interface. Silica-gel column partitioning of A. melegueta fruit/seed resulted in 6 fractions tested against furin activity. Diarylheptanoid (Letestuianin A), phenylpropanoid (4-Cinnamoyl-3-hydroxy-spiro[furan-5,2'-(1'H)-indene]-1',2,3'(2'H,5H)-trione), flavonoids (Quercetin, Apigenin and Tectochrysin) have been identified as high-binding compounds to SARS-COV-2 targets in a polypharmacology manner. Di-ethyl-ether (IC50 = 0.03 mg/L), acetone (IC50 = 1.564 mg/L), ethyl-acetate (IC50 = 0.382 mg/L) and methanol (IC50 = 0.438 mg/L) fractions demonstrated the best inhibition in kinetic assay while DEF, ASF and MEF completely inhibited furin-recognition sequence containing Ebola virus-pre-glycoprotein. In conclusion, A. melegueta and its secondary metabolites have potential for addressing the therapeutic needs of African population during the COVID-19 pandemic.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Furina/antagonistas & inhibidores , Fitoterapia/métodos , Extractos Vegetales/uso terapéutico , SARS-CoV-2/efectos de los fármacos , Zingiberaceae/química , COVID-19/epidemiología , Evaluación Preclínica de Medicamentos/métodos , Frutas/química , Frutas/metabolismo , Furina/metabolismo , Humanos , Técnicas In Vitro , Metaboloma/fisiología , Simulación del Acoplamiento Molecular , Pandemias , Extractos Vegetales/química , Extractos Vegetales/metabolismo , Polifarmacología , SARS-CoV-2/patogenicidad , Semillas/química , Semillas/metabolismo , Zingiberaceae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA